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● Modern HEP Particle Detectors:
○ Formed from different sub-detectors & arranged in cylindrical concentric layers around 

the nominal interaction point
○ Uniform magnetic field in the centre of the detector parallel to the beam line
○ The ideal trajectory of charged particles in 3D is a helix (axis parallel to the beam line)
○ Tracks: reconstructed sequences of hits representing charged particle trajectories

● Track finding as a Pattern Recognition Problem:
○ Associate measurements (‘hits’) into sequences representing tracks
○ Scale: O(10^5) hits per event, several 1000s tracks → main consumer of CPU today
○ Current algorithms are based on combinatorial track following approaches
○ Future upgrades → increased data from particle detectors i.e. High Luminosity phase of 

the LHC experiment, reconstruction ~mins with 40 million collisions per second
○ CPU time increase creates a huge demand for computing power

Motivation for novel approaches in track finding → large savings in CPU

● Research focus: Inner Detector (ID):
○ Typically dedicated to track and vertex reconstruction
○ Closest to the beamline & has highest hit occupancy
○ Generally consists of several types of sensors: Pixel & Strips

● Aim: Explore Track Finding methods utilizing GNNs
○ Clusters of hits are connected together into a graph network
○ GNN algorithm will serve as a more sophisticated seeding for Pixel clusters
○ Preliminary track seeds which can be refined & extended into Strips 
○ Such an approach could be very efficient for saving computation resources, if the 

GNN doesn’t produce too many fake tracks from random combinations of hits

Track Finding & Motivation

Example 
Combinatorial 

Seeded Approach

Simulation of a proton-proton collision expected at the 
High Luminosity phase of the LHC experiment
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Overview:

● Unique method: unlike traditional approaches where Multi- Layered 
Perceptrons (MLPs) are trained

● Architecture: fully iterative pattern recognition algorithm; at each 
iteration we discover new track candidates

● Iteratively resolve ambiguities by masking incompatible edge 
connections & improves track parameters

GNN Initialization
→ Out of the box 

Connected Component 
Analysis (CCA)

Information Aggregation 
& KF Update

Update Network 
State

How will this be achieved?
Utilizing pattern recognition techniques, we 
alternate between “edge outlier masking” via 
Gaussian Mixture Reduction (GMR) & message 
passing via Neighbourhood Aggregation (NA) 
to iteratively improve the precision of track state 
estimates. As the network evolves, the edge 
connections should stabilize.

Track Extraction 
via KF

GMR via 
Clusterization

Track Finding on Graph Networks

Algorithm Stages:
1 2 3

Track Extraction 
via KF

Example GNN illustration

Unique use of Kalman Filters (KF): 
Exploits a priori knowledge about charged particle dynamics, by using simplified 
KFs as mechanisms for information propagation & track extraction



GNN Initialization

Form a Joint Vector State:

Inverse inclination 
from (r, z) plane

Parabolic parameters from (x, y) plane

Parabolic Model (x, y) Plane:
● m are measurements of track position
● Local (node specific) coordinate-system
● Track states at node A: Parabolas 
● Equations for parabola parameters at node 

A:

● We assume:

2

1

3

Linear Model (r, z) Plane:

Given a node A, conditioned on its neighbourhood Bj: 
● Compute Xij (track state estimate) 
● Compute Cij (edge covariance)
● This forms a Gaussian component 𝜑ij
● Store all components at node A 
● Gaussian mixture gi(X) at node A

Gaussian Mixture at Each Node:

A

B1

B2

B0

B3

5
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Aim: Identify & mask outlier edge connections

Why reduce the mixture?
● Recursively processing, no. of components & calculations can grow exponentially
● Solution: Given a node, model each edge as a Gaussian component, forms a 

Gaussian mixture with N components, find a reduced mixture with M < N 
components, such that some deviation measure is below a threshold

GMRC: Gaussian Mixture Reduction via Clustering
● Can be achieved in two ways:

○ Iteratively merging Gaussian components → forms a merged state 
○ Pruning components by masking outliers

Pseudocode:
● Based on k means clustering, but with k=1
● Introduce a distance metric between all edge connections - KL divergence
● Compute pairwise distances, start with the smallest:
● If metric < threshold → merge components
● Progressive convergence, check all edge pairs until no further merging possible
● Outliers identified & masked

KL (Kullback–Leibler) divergence:
● Deviation measure, serves as a cost function
● Measure of the distance between 2 probability distributions
● Optimal KL threshold learned using a Support Vector Machine (SVM) classifier

Outlier edge masked

B0, B2, B3 track 
state estimates 
cluster together

A

A

B0

B0

B1

B1

B2

B2

B3

B3

Merged state 
stored at Node A

Iteration 1: Gaussian Mixture Reduction
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● The problem: given a neighbourhood 𝒩 = {Bi}, calculate the 
Gaussian mixture representing a possible track state at the node 
A conditioned upon a measurement mA

● The model: at each neighbour node Bi the track state is 
represented by a Gaussian mixture, or a reduced mixture (merged 
state)

A
B0

B2

B1

B3

mA

Component Extrapolation

Edge with prior probability pi

● Information aggregation: distribute messages to neighbourhood 
if edge connections are active

● State Extrapolation: merged state is extrapolated from 
neighbour node to node A using linear extrapolation equations

● Validation: compute the residual & chi2 distance between 
extrapolated state and the measurement at node A

● Perform KF update: If the chi2 distance is compatible
● Otherwise this edge connection is turned off

Message 
Passing

State 
Extrapolation Validation

Extrapolation:

Fi is the jacobian from Bi to A

Q is the process noise matrix: 
encompasses all material effects 
modelled using “Ornstein-Uhlenbeck” 
(OU) process

Iteration 2: Information Aggregation & Kalman Filter

KF Update
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Aim: Extract tracks iteratively as the network evolves after each iteration, 
good track candidates don’t need to be processed again

Some remaining networks/isolated nodes will remain as not 100% of 
ambiguities can be resolved

Criteria for a good candidate: 
● Candidate must have >= 4 hits: no track fragments
● 1 hit per layer: no competing/intersecting tracks & no holes
● P-val acceptance threshold > 0.01 (chi2 distance with KF track fit)

Outlier Edges:

● Incompatible edge connections - shown here as greyed out edges in 
order to split subgraphs and form suitable track candidates - i.e. 1 hit 
per layer

Extracting good candidates:

Extracted with KF

Intersecting tracks: 
Further processing via 

community detection (see 
backup slides)

Extracted with KF

Track Splitting & Extraction

1. Connected 
Component 

Analysis (CCA)

2. Kalman Filter 
Track Fit

Iteratively predict & 
update track 
parameters

3. Community 
Detection



Results



Application on a Simple Simulation • Remove nodes with high variance 
• Hot nodes (white, yellow): high variance of edge orientation
• Cold nodes (orange, red): low variance of edge orientation
• Start the pattern recognition in “cold” regions• Initialize the graph network: 

○ Simple 2D model (70 nodes) using the Python package: NetworkX
○ Kalman Filters implemented using Python package: Filterpy
○ Nodes as hits & predicted edges using a simple ‘hit-pair-predictor’
○ Create a framework that automatically determines a suitable 

region for initiating pattern recognition
○ Criteria: variance of edge orientation

Variance of edge orientation indicating “hot” & “cold” regions

Start pattern recognition 
with these nodes:

10
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1st iteration: clustering &
edge outlier detection

Track Splitting after Iteration 1Network Simulation, weakly 
connected components

Remaining network after 
Iteration 1● Iteration 1 only:

○ 6/7 potential good track candidates are extracted - fast convergence
○ Of which 100% precision with respect to the ground truth

● No further tracks were extracted from remaining network - further processing needed
● Approximate timings → ~10s

Simple Simulation Results

Deactivate connections:
14 → 45
45 → 17

11
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TrackML Model
What is TrackML?

● More realistic detector model & generated data
● Open source (Kaggle) Data Science competition set out to improve 

the software needed to process & filter promising events

Using TrackML data:
● Here we focus on Pixel Endcap volume (region 7 only)
● An example of 1 event simulation
● Initialize network nodes & bidirectional edges
● Number of nodes: 8748, number of edges: 12852
● Nodes correspond to hits from a simulated event



Track 
reconstruction 

efficiency: 
> 90%

62% track 
candidates 

extracted after 1st 
iteration uniformly

Endcap data points Graph network track splitting

Extracted track candidates (xy) Extracted track candidates (rz)

Purity Distributions

TrackML Results: Left Endcap
● Isolating the left endcap region
● 1683 subgraphs: 62% tracks extracted after iteration 1
● TrackML standard requirement: track purity & particle 

purity must be > 50%
● Track reconstruction efficiency:
● > 90% efficiency for tracks with pT > 1GeV

13
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TrackML Results: Pixel Barrel & Endcaps

Stage 1 Predicted Class

True 
Class

1 0

1 TP: 62102
(TPR: 0.92)

FN: 5211
(FNR: 0.08)

0 FP: 2891
(FPR: 0.15)

TN: 16240
(TNR: 0.85)

Prediction of 
outlier edges

Prediction to 
keep edge active

Stage 2
Extrapolation Predicted Class

True Class

1 0

1 TP: 18279
(TPR: 0.48)

FN: 19707
(FNR: 0.52)

0 FP: 8786
(FPR: 0.54)

TN: 7528
(TNR: 0.46)

Iteration 1: 
● Precision 96%, Recall 92%
● Extracted candidates: 1629

Iteration 2:
● Precision 68%, Recall 48%
● Extracted candidates: 294

Iteration 3:
● Extracted candidates: 7

● Approximate timings → a couple minutes with 
no parallelization of code

● Predicted class 1: Identifying an outlier edge
● Predicted class 0: Keeping an active edge on

Confusion Matrices

True Positive Rate (TPR): the model correctly predicts 
the positive class, similarly for True Negative (TNR)
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● The approach developed here is a unique method, unlike the traditional approach whereby Multi-Layered Perceptrons 
(MLPs) are trained

● The graph network is allowed to learn local track parameters on its own by iteratively resolving ambiguities in order to 
discover new track candidates

● Endcap: preliminary result of > 90% track recon. efficiency for tracks with pT > 1GeV

● Initial results with the barrel region show high purity of extracted tracks, high TPR of 0.92 and TNR of 0.85, at iteration 1

● The incorporation of KFs for both information aggregation & track extraction is a unique approach and has shown to 
give promising results on both a simple MC toy model & TrackML model

● Neighbourhood information aggregation via message passing is a powerful feature of GNNs which is leveraged here; 
the network has the ability to learn local track parameters

● Promising initial results on the Pixel barrel region. But further evaluation of this part of the TrackML detector is needed - 
further analysis will give a more complete picture in denser hit environment & give an indication of algorithm performance

Summary
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The ATLAS Experiment and Inner Detector
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● General Purpose detector at the LHC, aims to make 
Standard Model precision measurements and test BSM 
theories

● The Inner Detector (ID) is dedicated to track and vertex 
reconstruction, it consists of 3 sub-detectors

1. Pixel Detector and Insertable B-Layer (IBL); 
a. Closest to the beamline
b. Has highest hit occupancy

2. Semiconductor Tracker (SCT)
3. Transition Radiation Tracker (TRT)

● The ID Trigger is part of the High Level Trigger (HLT) and 
performs fast online track and vertex finding. 

● The ID Fast Tracking algorithm uses seeded track finding 
and combinatorial track following
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TrackML Model Hit-Pair Predictor

Edge prediction for network nodes:

● We use the algorithm (FastTrack) submitted to the TrackML competition
● Github repo: https://github.com/demelian/fastrack

● Edge predictor algorithm:
○ In the Pixel detector there is a strong correlation between the lengths of pixel clusters and 

track inclination angle, found within data exploration
○ Train a binary classifier to identify hit-pairs which correctly belong to the same track
○ Discriminate between hit pairs that have correct hit association & hence belong to the 

same track, vs hit pairs that do not belong to the same track
○ Predicted results are converted into a to fast Look-Up-Table

GNNs for Pattern Recognition & Fast Track Finding - Nisha Lad 

https://github.com/demelian/fastrack
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Given a node A, conditioned on its neighbourhood Bj: 
● Compute Xij (track state estimate) 
● Compute Cij (edge covariance)
● This forms a Gaussian component 𝜑ij
● Store all components at node i 
● Gaussian mixture gi(X)

A

B1

B2

B0

B3

Definitions:
● Bidirectional edge weight {0, 1}
● e = 0 inactive edge, e = 1 active edge
● Arrow direction conventions: i → j transmission 

of messages from node i to node j

● Mixture weight for a Gaussian component 
transmitted from the neighbour node j to node i

● Prior probability of neighbourhood nodes j and 
central node i being on the same track, if a track 
can produce at most one hit per layer

wij

pj

Initialize all bidirectional edges eij as “active” = 1

● Priors:
p1 & p2 = 0.5, p0 & p3 = 1.0

● Mixture weight:
For each track state, initialize uniformly as 
1/num nodes in neighbourhood of node A, wij = 0.25

Network Initialization

eij
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Learning the Optimal KL Threshold

20

● Can we obtain a functional form?
○ Predict the optimal pairwise KL distance for correct edge pairs using MC truth

● Expectation: 
○ if the variance is high, tighter cut on the KL distance is needed (& vice versa)

● Simulation:
○ 10000 events, each with 10 tracks, Sigma0 = 0.5
○ Focused on nodes in ‘cold’ regions
○ Train : test split 70 : 30
○ X feature vector: empirical variance of edge orientation, for any given node & 

pairwise KL distance

● Training:

○ SVM trained to maximise recall
○ Optimum hyperparameters: Poly degree 

3, C=0.1, Ɣ=0.1
● Predictions:

○ Recall (TPR) 0.94, tuned to 0.95
○ Decision boundary extracted & converted 

to 2D LUT for fast lookup

GNNs for Pattern Recognition & Fast Track Finding - Nisha Lad 
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GNNs for Pattern Recognition & Fast Track Finding - Nisha Lad 

Iteration 2: Information Aggregation & Kalman Filter
Definitions:

● Extrapolation:
○ Extrapolation of the track state estimate X, where F is the 

Jacobian of for the extrapolation from node B to A
○ Extrapolated covariance matrix C, with the addition of the 

process noise Q, and symmetrical product with Jacobian F
○ Jacobian F and process noise Q both derived using 

Ornstein-Uhlenbeck (OU model)
○ 𝛼 determines the dynamics, it is a correlation hyperparameter

● Process Noise Q:
○ Q encompasses all material effects & is modelled by the OU 

process, which models the constant drift in 𝝓 due to the 
presence of the magnetic field

○ OU process noise models this dynamic behaviour
○ σou is the uncertainty due to the OU process and σms is the 

uncertainty due to multiple scattering

● Additional steps:
○ Residual rij with measurement at node A & extrapolation, 

where H is the measurement matrix
○ The covariance of the residual Sij
○ The chi-squared distance Δ𝞆ij

2
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Chi2 Acceptance Threshold for Extrapolated Merged State
Sigma0 = 0.1 Sigma0 = 0.2

Sigma0 = 0.3 Sigma0 = 0.4 Sigma0 = 0.5

● Varying sigma0 and recording the chi2 
distance for extrapolated states

● Plotted chi2 distance for states where 
the node and neighbour node has truth 1

● Distance is independent of sigma0
● Chi2 acceptance threshold set to 2

GNNs for Pattern Recognition & Fast Track Finding - Nisha Lad 
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● Gaussian mixture reduction is executed again on any remaining 
networks to further resolve ambiguities 

● Perform clusterization & merging on updated track states outputted 
from the previous iteration

● Propagation of higher precision estimates

● Outliers are masked, priors & weights are updated

● Scenario where merging is forbidden:

○ A node has only 2 competing edge connections & components 
come from 2 different nodes in the same layer (i.e. nodes 2 & 4)

○ More precise extrapolated tracks from 2 & 4 will give sharper 
discrimination in later iterations

Outlier edge masked

B0 & B2 track state 
estimates cluster 

together

A

A

B0

B0

B1

B1

B2

B2

B3

B3

GMR: Merged 
state stored at 

Node A

Outlier edge masked

1

2

4

3

5

Iteration 3: Gaussian Mixture Reduction

Outlier edge masked

GNNs for Pattern Recognition & Fast Track Finding - Nisha Lad 
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GNNs for Pattern Recognition & Fast Track Finding - Nisha Lad 

Gaussian Components & Reweighting
Matrix definitions:

● At each node, all edge connections form a weighted Gaussian mixture
● Weights are given by w_ij and each edge connection is comprised of its 

track state vector X_ij and the edge covariance C_ij derived from the 
associated measurement errors

● The edge weights are defined as a ratio, together with the prior probability 
p_i and the measurement likelihood B_ij defined as the normalized 
Gaussian measurement likelihood, as a function of the chi-squared 
distance between the extrapolated state and the measurement at the node

● The final weights are then divided through by the number of layers on each 
respective side of the MC toy model, i.e. NL = no. of layers on left and NR = no. 
of layers on right, as the track direction needs to be taken into account
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● As the network evolves edge connections will become masked/remain active → graph structure will change
● Hence reweighting mixture components & recomputing priors will be needed
● If any weights < threshold, these edge connections are isolated
● Forms part of the mechanism for edge activation/deactivation

Consider the example above:

● Connection B2 to A is deactivated (eB2A = 0)
● Message passing/extrapolation from B2 to A is incompatible
● From the perspective of node A the priors change: p0 remains at 

0.5 (its previous value), p1 gets updated 1.0 and p3 = 1.0
● B0, B1 and B3 components will get reweighted

A

B1

B2

B0

B3

NL = 2 NR = 1

Reweighting the mixture:

● Measurement likelihood (conditional on component) given by βij

● Updated weights for the mixture extrapolated from node Bi are:

● Account for the no. of layers in the neighbourhood
○ Need the probability that a track passing through node A 

was detected at layer L
○ Hence        must be divided by the no. of layers NS on the 

corresponding side of the neighbourhood
○ I.e. B0, B1, B2 division by 2, B3 division by 1

● Final Gaussian mixture with components:

Updating Priors & Weights

GNNs for Pattern Recognition & Fast Track Finding - Nisha Lad 

NL = no. of layers on left
NR = no. of layers on right
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Tuning the Reweight Threshold

● If the weights of components < threshold → 
deactivate these edge connections

● Plot: Edge connections reweight 
distributions:

● Tuning the reweight threshold parameter
● Look at remaining networks after the first 

reweighting calculation has been executed
● Edge MC truth (1 or 0) & edge reweight
● Both distributions overlap considerably, there 

is not a lot of difference separating the two 
distributions

● Therefore, as we do not want to turn off a 
large proportion of  “good” edge connections, 
then reweight threshold of 0.1 is fine.

Reweight distribution after iteration 2 of edge connections 
for MC truth correct and incorrect edge pairs

GNNs for Pattern Recognition & Fast Track Finding - Nisha Lad 
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● KF is central to the tasks in this algorithm
● Kalman Filters implemented using Python package: Filterpy

Two main applications:

1. Iterative Information Aggregation stage
○ Connections/segments which we track as straight lines
○ Process noise term due to multiple scattering
○ Affects the track inclination variable

2. Track Extraction
○ Overall, the track bends due to the presence of the magnetic field
○ Need a more sophisticated process noise model in the KF for extraction
○ Ornstein-Uhlenbeck (OU) Process:

■ Used as a type of correlated noise
■ Represents the constant drift in the track azimuthal angle (𝜙) caused by presence of B-field

○ KF model becomes 3-dimensional

Implementation of Kalman Filters
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The KF Algorithm
Kalman filtering, also known as linear quadratic estimation (LQE), is an algorithm that uses a series of measurements observed over 
time, including statistical noise and other inaccuracies, and produces estimates of unknown variables that tend to be more accurate than 
those based on a single measurement alone, by estimating a joint probability distribution over the variables for each timeframe.

Very powerful technique used in track fitting/trajectory 
optimization.

The algorithm works by a two-phase process. For the 
prediction phase, the Kalman filter produces estimates 
of the current state variables, along with their 
uncertainties. Once the outcome of the next 
measurement (necessarily corrupted with some error, 
including random noise) is observed, these estimates 
are updated using a weighted average, with more 
weight being given to estimates with greater certainty. 

The algorithm is recursive. It can operate in real time, 
using only the present input measurements and the 
state calculated previously and its uncertainty matrix; 
no additional past information is required.

GNNs for Pattern Recognition & Fast Track Finding - Nisha Lad 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Statistical_noise
https://en.wikipedia.org/wiki/Joint_probability_distribution
https://en.wikipedia.org/wiki/State_variable
https://en.wikipedia.org/wiki/Weighted_mean
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Real-time_Control_System
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Community Detection
● Community structure of a network = division of its node set 
● Partition the network  s.t. nodes in the same subgraph are closely 

connected & nodes in different subgraphs are sparsely connected
● Each subgraph is called a community

Aim: 
● Resolve ambiguities earlier & aim for faster convergence. 
● Extract communities within intersecting track candidates or >1 hit per layer

Modularity Maximization:
● Modularity: benefit function that measures the quality of a division of a network 

into communities, measures the relative density of edges inside communities 
w.r.t edges outside communities; high values correspond to good division

● Popular modularity maximization approach is the Louvain method (LM), 
iteratively optimizes local communities until global modularity can no longer be 
improved given perturbations to the current community state

● LM for directed networks: Integrates greedy strategy and hierarchical clustering, 
O(nlogn) where n is the number of nodes in the network

For a weighted, directed graph the 
functional form of modularity is given below:

GNNs for Pattern Recognition & Fast Track Finding - Nisha Lad 

Algorithm: 
● Starting from singletons partition of 

vertices, the algorithm tries to increase 
the modularity by moving vertices from 
their community to any other neighbor 
one. 

● Compute the gain obtained by removing 
vertex i from its own community Ci

● Repeat as long as it exists a move that 
improves the value of modularity

https://en.wikipedia.org/wiki/Modularity_(networks)
https://en.wikipedia.org/wiki/Louvain_Modularity
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● Community structure of a network = division of its node set 
● Partition the network s.t. nodes in the same subgraph are “closely connected” 
● Distance metric: directed modularity
● Each subgraph/colour represents a different community
● Greater proportion of good track candidates established at an earlier iteration
● Faster convergence

After: 7 communities detected

Not 100% perfect, 
small fragment partition

Before: 
1 community, 1 large subgraph

Community Detection

GNNs for Pattern Recognition & Fast Track Finding - Nisha Lad 

1. Connected 
Component 

Analysis

2. Kalman 
Filter Track Fit

3. Community 
Detection

Track Splitting:
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Extracted via 
community 
detection & 
KF track fit

Extracted via 
KF track fit

Iteration 1 only

Extracted track candidates

Remaining network: track fragment
Algorithm end state

1st iteration: Clusterization/outlier masking

7/7 track candidates extracted after 1 iteration

Deactivate connections (outliers masked):
25 → 3
26 → 4
14 → 46
44 → 62 

Precision: 55% on outlier 
edge connections identified

Results: Example 2

31
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Results: Example 3
● Iteration 1 & 2
● This specific simulation was able to resolve 

all ambiguities within 2 iterations 
● 100% purity wrt MC truth

Extracted candidates 
after iteration 1

1st iteration: clustering &
edge outlier detection

Remaining network after 
Iteration 1

Extracted candidates 
after iteration 2

Network after extrapolation
Iteration 2

7/7 track candidates 
extracted after 2 iterations
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TrackML - Node Merging ● Tuning of 3d separation distance - first considered module_id
● However not easy to calculate how close each hits are to each other due to 

arrangement of modules
● Calculation of 3d separation of the 2 nodes → threshold from distribution
● Small improvement - stats on the endcap: 515/1683 → 583/1683 subgraphs 

extracted on entire endcap region in iteration 1
● Will be useful for first iteration as these track candidates have been extracted 

first, and will make further iterations much faster
● Flexible in the sense that at the moment I am only looking for a specific type of 

subgraph (Any number of layers containing 2 nodes → apply distance cut)

GNNs for Pattern Recognition & Fast Track Finding - Nisha Lad 
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GNNs for Pattern Recognition & Fast Track Finding - Nisha Lad 

Track Purity, Particle Purity, Track Reconstruction Efficiency
● Only particles with four hits or more are considered, and only proposed tracks with four hits or more are considered
● Each track is matched with the ground truth majority particle sharing with it the greatest hit number

● Track purity: 
○ The ratio of this intersection to the number of hits of the reconstructed track

● Particle purity: 
○ The ratio of this intersection to the number of hits of the underlying particle

● Both ratios > 50% to define a good track so that a one-to-one relationship between particle and track can be defined
● Same definition as what is used in the TrackML study

Track Reconstruction efficiency:

● We consider reference particles which are fully contained in the volume we are currently working on (endcap volume 7), this defines 
our reference tracks
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Ongoing & Next Steps

● Investigating problems in the Barrel layers
○ Analysing the properties of the remaining network connections in the Barrel
○ Barrel - to - Endcap transition connections

● Improving the purity of results:
○ Confusion matrix for iteration 2 can be significantly improved

○ Extrapolation - in both (x, y) and (r, z) planes

● Community Detection
○ Implementing a custom community detection
○ Analysing node pairs & utilizing KL distance to identify communities

● Implement stopping criteria
○ I.e. Quality of remaining networks < threshold, terminate the algorithm

● Performance Studies/Testing
○ Applying the algorithms to many events and averaging statistics
○ Optimizations - improve implementation i.e. parallelize code


